
Problem Analysis
Disclaimer: This is an analysis of some possible ways to solve the problems of The 2019 ICPC Asia Jakarta
Regional Contest. Since the purpose of this analysis is mainly to give the general idea to solve each problem,
we left several (implementation) details in the discussion for reader’s exercise. If some of the terminology or
algorithms mentioned below are not familiar to you, your favorite search engine should be able to help.

Problem Title Problem Author Analysis Author

A Copying Homework Jonathan Irvin G., Suhendry E. Suhendry Effendy

B Cleaning Robots Suhendry Effendy Suhendry Effendy

C Even Path Vincentius Madya Putra Indramawan Suhendry Effendy

D Find String in a Grid Wiwit Rifa’i Wiwit Rifa’i

E Songwriter Alfonsus Raditya Arsadjaja Alfonsus Raditya Arsadjaja

F Regular Forestation Winardi Kurniawan Suhendry Effendy

G Performance Review Jonathan Mulyawan Woenardi Jonathan Mulyawan Woenardi

H Twin Buildings Wiwit Rifa’i Wiwit Rifa’i

I Mission Possible Vincentius Madya Putra Indramawan Suhendry Effendy

J Tiling Terrace Ashar Fuadi Ashar Fuadi

K Addition Robot Prabowo Djonatan Prabowo Djonatan

L Road Construction Jonathan Irvin Gunawan Jonathan Irvin Gunawan

The 2019 ICPC Asia Jakarta Regional Contest – Problem Analysis 1

A. Copying Homework
There are multiple ways to get CORRECT in this problem. To make sure the output B has ≥ N total
difference with A, we may need to shuffle A such that no element in A remains in its position (also called
a derangement of A), i.e. Ai 6= Bi for all i = 1..N . One easy method to achieve this is simply by shifting
A one element to the right (or left). For example, let A = {1, 2, 3, 4, 5}, then B = {2, 3, 4, 5, 1}. Using this
method, it is guaranteed that no element in A remains in its position.

Several WRONG-ANSWER solutions:

• Reversing A. When |A| is odd, then reversing A will leave exactly one element (at the center) remains
in its position. It is possible to design cases such that the total difference is less than N . For example,
A = {2, 4, 3, 5, 1} and B = reverse(A) = {1, 5, 3, 4, 2}, then the total difference is 1 + 1 + 0 + 1 + 1 = 4

which is less than N = 5.

• Random shuffling A. It is tempting to simply random shuffle the input to solve this problem, however,
such a solution would not work. There is no guarantee that random shuffling A will produce B such
that Ai 6= Bi for all i, thus, the total difference might be less than N . The test data is designed such
that a plain random shuffle (e.g., C++ random_shuffle(), Java Collections.shuffle(), Python
random.shuffle()) solution only has < 0.02% chance of getting CORRECT. Moreover, if a fixed ran-
dom seed is used, then it has 0% chance of getting CORRECT.

B. Cleaning Robots
This problem can be solved with dynamic programming. The following analysis assumes the tree is rooted
(simply select an arbitrary node as the root).

First, let us define a state 〈u, s〉 where u is a node and s is either {0, 1, 2} as follows:

• 〈u, 0〉 – node u and its parent are cleaned by a different robot.

• 〈u, 1〉 – node u and its parent are cleaned by a different robot, and node u should be cleaned together
with its 2 direct children.

• 〈u, 2〉 – node u and its parent are cleaned by the same robot.

Let a function f(u, s) be the number of feasible deployment plans on a subtree rooted at node u. Then, the
solution to this problem is simply f(root, 0).

With these state and function definitions, we can derive the recurrence relation between states. Let ηu be
the set of node u’s children, ηui be the ith child of node u, and n be the number of node u’s children (i.e.
|ηu|). The recurrence relation is:

f(u, s) =


h1(u, 1) + h2(u) + h3(u) if s = 0,
h2(u) if s = 1,
h1(u, 0) + h3(u) if s = 2

The 2019 ICPC Asia Jakarta Regional Contest – Problem Analysis 2

h1(u, s) =
∑

i=[1..n]

∏
v∈ηu

{
f(v, 2) if v = ηui

f(v, s) if v 6= ηui

h2(u) =
∑

i=[1..n]

∑
j=(i..n]

∏
v∈ηu

{
f(v, 2) if v = ηui or v = ηuj

f(v, 0) if v 6= ηui and v 6= ηuj

h3(u) =
∏
v∈ηu

f(v, 1)

The function h1(u, s) handles the case where we should choose one child to be cleaned together with node u
while the remaining other children are in state 〈ηui , s〉. The function h2(u) handles the case where we should
choose two children to be cleaned together with node uwhile the remaining other children are in state 〈ηui , 0〉.
The function h3(u) handles the case where node u is not cleaned together with any of its children.

Observe that the time complexity to compute h1(u, s) naïvely is O(n2), while h2(u) is O(n3), and h3(u) is
O(n). Therefore, the time complexity to compute the above recurrence relation is O(N3), which is too slow
for this problem with N ≤ 100 000. Optimizing these functions is the real challenge for this problem.

First good news: The function h1(u, s) can be computed in O(n).

h1(u, s) =
∏
v∈ηu

f(v, s)×
∑
v∈ηu

f(v, 2)f−1(v, s)

Note that we need to use the multiplicative modular inverse to compute 1
f(v,s) as we only need to find the

modulo while the full number can be very large.

Another good news: The function h2(u) can be computed in O(n).

xui = f(ηui , 2)f−1(ηui , 0)

yui =
∑

j=[i..n]

xuj

h2(u) =
∏
v∈ηu

f(v, 0)×
∑

i=[1..n]

xui y
u
i+1

Note that yui can be computed inO(n) for all i with partial sum technique, making itO(1) for each i. Also note
that yui = 0 if i > n. The original h2(u) function is actually in the form of a1a2b3b4b5+a1b2a3b4b5+a1b2b3a4b5+

· · ·+b1b2a3b4a5+b1b2b3a4a5 (an example where n = 5), i.e. there are 2 functions, a and b, choose two indexes
to have a while the remainings are b; evaluate each combination (perform the multiplications) and sum the
results for all the possible combinations. There are

(
n
2

)
combinations, and evaluating one combination is

O(n), thus, the original time complexity is O(n3). Try to optimize this summation into O(n) and you will arrive
at the above equations.

The 2019 ICPC Asia Jakarta Regional Contest – Problem Analysis 3

We do not need to optimize the function h3(u) as it is already in O(n). All seems good! The solution now
becomes O(N). However, there is a caveat in the implementation: Beware when you want to compute the
modular multiplicative inverse of zero (there is no such thing). You’ll need to further work on the equations
on such a case. Hint: We only need to consider the cases when there is at most 1 zero for h1(u) and 2 zeros
for h2(u).

C. Even Path
Observe that we can go from cell (r, c) to cell (r±1, c) only if the parity ofR[r] and the target cell (i.e. R[r±1])
are the same because there is only one element changing, i.e. R[r] toR[r±1]. Similar things also happened
with the column. We can go from cell (r, c) to cell (r, c ± 1) only if the parity of C[c] and the target cell (i.e.
C[c± 1]) are the same.

Therefore, for each query 〈ra, ca, rb, cb〉, we only need to check whether the parity of R[r] are the same for all
r = min(ra, rb)..max(ra, rb), and whether the parity of C[c] are the same for all c = min(ca, cb)..max(ca, cb).
Do a precomputation first (in O(N)) before processing any query so that we can decide whether R[i..j] or
C[i..j] have the same parity in O(1) for all pair of i and j. You can use a union-find data structure to do this,
although it is overkill; there is another much simpler ad-hoc method to find the groups involving only one
iteration. The time complexity for this solution is O(N +Q).

D. Find String in a Grid
To count the number of occurrences of the string Si in the grid, we can try each character position on Si as
a turning point. So, the total number of tries are

∑Q
i=1 |Si| ≤ 200000. Let us choose jth character position

as the turning point, then the string Si is consisted of a horizontal stringH and a vertical string V . The string
H is Si1Si2 . . . Sij and the string V is SijSij+1 . . . Si|Si|. To make the explanation become easier, we will
reverse the string H as SijSij−1 . . . Si1.

For case |H| = 1, we can ignore H and count the number of occurrences of string V vertically with a suffix
array. The suffix array will sort every cell (r, c) based on the suffix string Gr,cGr+1,c . . . GR,c. So, every
vertical occurrences of string V on the grid will be adjacent each other in the suffix array, so we can count
the number of occurrences of string V based on the longest common prefix of every adjacent indices on
suffix array and use binary search with the help of data structure such as range minimum query to find the
range of the occurrences of string V . We can insert all query strings to the suffix array before so that we
can know the starting position to do the binary search.

The equivalent process is also applicable for case |V | = 1, i.e. we can find the number of occurrences of
stringH horizontally with suffix array by sorting every cell (r, c) based on the suffix string Gr,cGr,c−1 . . . Gr,1.

If |V | 6= 1 and |H| 6= 1, then we can combine those 2 suffix arrays. Suppose the position of cell (r, c) on
the first suffix array (based on vertical suffix) is Xr,c and the position of cell (r, c) on the second suffix array
(based on horizontal suffix) is Yr,c. Since every occurrences of string V are adjacent on first suffix array (e.g.
it starts from LV until RV) and every occurrences of string H are adjacent on second suffix array (e.g. it
starts from LH until RH), then to combine V and H become together, we need to count how many cell (r, c)

that satisfying LV ≤ Xr,c ≤ RV and LH ≤ Yr,c ≤ RH .

We canmodel the rest problem as 2-DCartesian coordinates. Each cell will bemodeled as a point (Xr,c, Yr,c)

The 2019 ICPC Asia Jakarta Regional Contest – Problem Analysis 4

and each try on choosing the turning point will become a rectangle from point (LV , LH) until point (RV , RH).
So, the rest problem is to count how many points inside each rectangle. This problem can be solved by
data structure such as range tree or we can also use line sweep technique and use range sum query data
structure such as BIT or segment tree.

The time-complexity of this solution is O((R× C +
∑Q
i=1 |Si|)× log (R× C +

∑Q
i=1 |Si|)).

E. Songwriter
First of all, we can ignore the original sequence A and just get the relation between every 2 consecutive
numbers in A. At first glance, it looks like it can be done with a greedy approach from left to right; but if
the sequence is almost all decreasing or most of them are decreasing, we have to make an adjustment to
the elements prior to the current element when making B. It can be seen that the worst case is for every
position, we will be updating all numbers below the current position, results in O(n2). We need something
faster.

It can be seen that for every position, the numbers that have solutions formed a range. We define 2 functions,
low and high, that receives i as an input and returns the lowest and highest number that have a solution for
position i, respectively; So for every position i (1 ≤ i ≤ N), every number x in which lowi ≤ x ≤ highi, we
can find a solution that contains x as a number in position i of the new sequence B.

Note: If two consecutive elements have equal value, the values of 2 functions in corresponding indices will
be equal too. So for simplicity, we ignore the consecutive elements that have equal value and only consider
the rest.

We can generate the values of low and high as the following:

(lowi, highi) =


(L,R), i = N

(max(lowi+1 −K,L), highi+1 − 1), 1 ≤ i < N,Ai < Ai+1

(lowi+1 + 1,min(highi+1 +K,R)), 1 ≤ i < N,Ai > Ai+1

If there exists some position i that lowi > R or highi < L, there is no solution. Otherwise, there exists a
solution for given constraints and configuration. As we want the lexicographically smallest sequence, we
generate B from the smallest position.

The element that fills the first position (position 1) will be low1 itself, as it is the lowest possible number
that has a solution. In every following position, we can simulate the similar algorithm with the low and
high function above, but this time only considers the previous number that just been generated, and the
low and high functions that have been generated before. So if Ai−1 < Ai, Bi must be somewhere inside
[Bi−1 + 1, Bi−1 + K], and vice versa. But Bi must also somewhere inside [lowi, highi], so we just check
the lowest number that falls into both range, and it gives the value of Bi. It is guaranteed that there exists a
number that falls into both ranges at the same time, as we already checked there is a solution first.

This solution runs in linear time, hence O(N), enough to pass within the time limit.

The 2019 ICPC Asia Jakarta Regional Contest – Problem Analysis 5

F. Regular Forestation
The centroid of a tree is a node whose removal causes the remaining tree(s) to have at most half the number
of nodes of the original tree. A tree can only have at most 2 centroids.

Recall that removal of a good cutting point (as defined in the problem statement) will cause at least two
identical disconnected trees. Observe that each of those disconnected trees cannot have more than half the
number of nodes of the original tree. Therefore, if a good cutting point exists in the given tree, then it must
be at the centroid of the tree.

Tree centroid can be found in O(N)–alternatively, an O(N logN) or O(N2) if implemented efficiently, can
also be used as N in this problem is quite small.

The remaining task is to check whether the disconnected trees are identical (also called isomorphic). Rooted
tree isomorphism can be solved inO(N)with parenthetical tuples (AHU algorithm), although an easierO(N2)

version suffices. For this problem where the trees are unrooted, simply use the centroid of each tree as the
root. You need to be careful when the tree has 2 centroids. If you opt to test all nodes in each tree as the
root for tree isomorphism, then you will need the O(N) algorithm to do the tree isomorphism.

Note that using the center of a tree (as opposed to centroid) as the only candidate for the good cutting point
will not work (WRONG-ANSWER). The center of a tree is a node that has the lowest eccentricity (or lies in
the diameter path of a tree).

G. Performance Review
We first observe that, if there is an employee with better performance than Randall gets replaced in a par-
ticular year, then Randall must have also been replaced at the same time or before the particular employee
is replaced. Therefore, for Randall to stay in the company afterM years, all employees (original and newly
added) who have better performance than Randall must also stay in the company after M years. We only
need to check for each year, whether the number of employees with better performance than Randall plus
Randall itself is less than or equal to the number of employees not replaced on that particular year.

Let R[i] be the number of employees not replaced subtracted by the number of employees with better perfor-
mance than Randall plus Randall itself on that particular year. Construct the initial array and check whether
the minimum value of R[i] for all i is greater than or equal to 0.

For each query, there are 4 possible cases

1. The employee is previously worse than Randall. After the change, the employee is still worse than
Randall.

2. The employee is previously worse than Randall. After the change, the employee is now better than
Randall.

3. The employee is previously better than Randall. After the change, the employee is now worse than
Randall.

4. The employee is previously better than Randall. After the change, the employee is still better than
Randall.

The 2019 ICPC Asia Jakarta Regional Contest – Problem Analysis 6

For case 1 and case 4, since there is no change in the number of employees better than Randall joining the
company each year, the answer stays the same as before the query happens. For case 2, the number of
employees in the company better than Randall increased by 1 starting from the next year after the change
until the last year. For case 3, the number of employees in the company better tan Randall decreased by 1
starting from the next year after the change until the last year.

We can use Segment Tree with Lazy Propagation to support our update and query requirement. The query
type is range minimum query and the update type is range update of +1 or -1.

The time complexity will be O(N + (M +Q) logM).

H. Twin Buildings
For each land, we can always build the two buildings on the same land by dividing this land into half hori-
zontally or vertically. So, the answer should be at least half of the largest area of all buildings.

Since the two buildings don’t necessarily have the same orientation if they are on the different lands, then
we can assume that we can always swap Li andWi for any ith land. If we place the two building on ith and
jth land, then the largest building area that we can build is max(min(Li, Lj) ×min(Wi,Wj),min(Li,Wj) ×
min(Wi, Lj)).

Without loss of generality, we assume that min(Li,Wi, Lj ,Wj) = Li, then the largest building area that we
can build on ith and jth land ismax(Li×min(Wi,Wj), Li×min(Wi, Lj)) or becomeLi×min(Wi,max(Wj , Lj)).
To make the solution easier, we can swap Li andWi for some lands so that Li ≤Wi for all buildings.

Let us sort the lands based on the non-increasing Li. Observe that for every i > j we have Li ≤ Lj , and
then the largest building area that we can build is Li × min(Wi,max(Wj , Lj)) = Li × min(Wi,Wj), since
Lj ≤Wj . So, for any i, we just need to find the largestWj for all j < i. We can do all of them in O(N logN)

time-complexity.

Note: we must avoid using floating-point numbers since the answer can be very large until 1018 and it might
cause the precision loss.

I. Mission Possible
We need a basic understanding of graph theory (pathfinding) and geometry (tangent and line) to solve this
problem. The big idea is: The feasible path can be found through some tangent/boundary line segments.

First, let us deal with the geometry aspect of this problem. Find the tangent lines between Allen’s initial/target
points to any circles, and the tangent lines between any two circles. Next, make each tangent line into a
tangent line segment such that:

1. The two objects (points or circles) which create the tangent line are still connected by the line segment,

2. The line segment spans as much as possible without crossing any circle or going out of the boundaries.

If the tangent line segment cannot connect the two objects which create it (e.g., it crosses another circle),
then we can drop that tangent line. Next, find all the boundary line segments; there are 4 boundaries (the

The 2019 ICPC Asia Jakarta Regional Contest – Problem Analysis 7

rectangle’s sides), but we need to break them down into some line segments if there is a circle crossing the
boundaries.

	0

	20

	40

	60

	80

	100

	0 	20 	40 	60 	80 	100

	0

	20

	40

	60

	80

	100

	0 	20 	40 	60 	80 	100

	0

	20

	40

	60

	80

	100

	0 	20 	40 	60 	80 	100

Now, let us transform this problem into a graph problem. Let the line segments be the vertices, and an edge
implies that the two line segments have an intersection point. The starting vertex is all line segments that
go through Allen’s initial point, while the goal vertex is all line segments that go through Allen’s target point.
Finally, simply do a breadth-first search (BFS) to find the path from the starting vertex to the goal vertex. You
need to keep the parent node as you do BFS to print the points.

J. Tiling Terrace
The solution uses a combination of dynamic programming and greedy. Let S be the number of characters
‘.’ (soils) in the input, and R be the number of characters ‘#’ (rocks) in the input. Note that R is at most 50.

Observation 1 Since type-3 tiles can only be placed on “.#.”, then the maximum possible number of type-3
tiles that can be placed is R (which is at most 50).

Observation 2 Because we want to maximize the result, any placed type-2 tile can be replaced by two
type-1 tiles (when G1 ∗ 2 > G2), or one type-1 tile (when G1 > G2 and doing the former would exceed the
limit of K).

The solution uses dynamic programming by assuming that we can only use type-2 and type-3 tiles. Type-1
tiles can then be inserted greedily using Observation 2.

Define dp[i][j] be maximum number of type-2 tiles that can be used for tiling cells [1..i], using exactly j type-3
tiles. The recurrence is trivial: For each state, decide whether we want to leave the ith cell untiled, put type-2
tile, or put type-3 tile.

After we fill our DP table, we can brute-force j, the number of type-3 tiles used. For each j, we know that:

• The number of type-2 tiles used is dp[N][j]

• The number of type-3 tiles used is j

• The number of untiled soil cells is S − 2 ∗ dp[N][j]− 2 ∗ j

• We can put type-1 tiles on the untiled cells. Then, if we still have spare type-1 tiles left, we can greedily
replace some of the type-2 tiles, using Observation 2.

The answer is the maximum result over all j. The time complexity is O(NR).

The 2019 ICPC Asia Jakarta Regional Contest – Problem Analysis 8

K. Addition Robot

Let the transformation matrix for characters ‘A’ and ‘B’ be

1 0

1 1

 and

1 1

0 1

 respectively. This is because:

[
a b

]1 0

1 1

 =
[
a+ b b

]
and

[
a b

]1 1

0 1

 =
[
a a+ b

]

Next, we build a segment tree of size N , where each node is a 2× 2 matrix which is the multiplication of its

two children. The i-th leaf node is

1 0

1 1

 if S[i] = A or

1 1

0 1

 if S[i] = B.

To answer the query, we simply do the standard range query operation on the segment tree and obtain the
transformation matrix. Multiply the initial A and B with this matrix will give us the answer.

To serve the toggle operation, we do update on the segment tree (with lazy propagation). If a node containingp q

r s

 covers the range that is to be updated, we update the node to

s r

q p

.
We can prove the correctness of the toggle operation by induction on the length of the character. The base
case of a single character can obviously be seen as true. Suppose the toggle operation is true for a string

of length k. Let

p q

r s

 be the transformation matrix of the string of length k. Adding the character A will

give the transformation matrix:

p q

r s

1 0

1 1

 =

p+ q q

r + s s


Applying the toggle operation on the left hand side gives us:

s r

q p

1 1

0 1

 =

s r + s

q p+ q


The prove for “adding character B” can be done similarly. Hence, the toggle operation is proven to be true.

The total complexity is O(Q logN).

L. Road Construction
Let us consider the easier version of this problem first if there are only N − 1 (instead of N) road proposals.
In this case, all roads have to be constructed. Therefore, we need to find a surjective mapping from the set
of road proposals to the set of workers.

The 2019 ICPC Asia Jakarta Regional Contest – Problem Analysis 9

We can do this by modeling a bipartite graph where we created a node for each road proposal and worker.
We add an edge connecting a road proposal node and a worker node if the worker can construct the road
proposal. The maximum cardinality bipartite matching should give us a surjective matching from the set of
road proposals to the set of workers if it exists. We will have O(NK) edges with this approach.

We can reduce the number of edges by creating a node for each material (that exists in the input) instead
of for each worker. Each of these nodes has a capacity (the number of times this node can be matched)
equals to the number of workers that is familiar with thematerial. We add an edge connecting a road proposal
node and a material node if the road proposal can be constructed with the material. Since a node u will be
connected toMu nodes, we will have O(ΣNi=1Mi) edges with this approach.

Now let’s get back to the original problem where we have N edges. Therefore, the road proposals will
contain exactly one cycle. Let’s denote A as the set of road proposals inside the cycle and B as the set of
road proposals outside the cycle. We need to construct at least |A| − 1 roads in set A and all roads in set B.

There are two ways to do this. Since we want to avoid redundant worker assignment, we want to keep at
most |A| − 1 workers to construct the set of road proposals in A. Therefore, we can create an additional
node (with a capacity of |A| − 1) that is connected to the maximum flow source and the set of road proposal
nodes in A. Alternatively, the easier method is to run the maximum cardinality bipartite matching on set B
first, before running it on set A. We will still have O(ΣNi=1Mi) edges with this approach.

The 2019 ICPC Asia Jakarta Regional Contest – Problem Analysis 10

